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1. Introduction

In the low energy limit type I and heterotic strings are described by N = 1, D = 10

supergravity theories, coupled to a super-Yang-Mills multiplet. From a phenomenological

point of view these string theories appear appealing, since non-abelian gauge fields appear

from the beginning. On the other hand in these theories the cancelation of chiral anomalies

requires to impose the modified Bianchi identity on the three-form curvature H,

dH = α(tr FF − tr RR), (1.1)

where F and R are respectively the Yang-Mills and Lorentz curvature two-forms, and

α = α′/4. As it stands this identity breaks supersymmetry, and the problem of its restora-

tion has been attacked in a series of papers in the past, [1]–[8]; for earlier work see [9].

The main concern of the present paper regards again the supersymmetrization of the

above Bianchi identity, in the framework of superspace that represents an efficient and

algebraically powerful approach.

The reasons for why in this paper we come back to this problem, presenting a new

superspace solution of the Bianchi-identity (1.1), are the following. First of all the su-

pergravity theory in consideration arises as the low energy effective field theory of string

theory, for which there exists now a manifestly supersymmetric and covariant quantization

scheme, the pure spinor approach [10], and this allows in principle to derive this effective

theory perturbatively in a manifestly supersymmetric form in superspace, [11]–[14]. In
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particular in [11, 12] the pure spinor approach was applied to derive pure supergravity

in superspace, while in ref. [14], that is based on previous work on the Green-Schwarz

heterotic string sigma model [15], it was applied to derive the Chern-Simons-induced cor-

rections to pure supergravity, again in superspace. For an earlier pure spinor derivation of

ten dimensional supergravity see [16]. These developments, in turn, will allow for the first

time to compare results from algebraic supersymmetrization techniques, with results from

a classical loop α′-expansion in string theory, in a case where both are manifestly super-

symmetric, i.e. formulated in superspace. The knowledge of the supersymmetric structure

of the α′-corrections to the low energy field theory, leading in particular to corrections in

powers of the Riemann tensor, play moreover a fundamental role in flux compactifications

of heterotic and type-I string theories, see e.g. [17]–[19]. The supersymmetric completion

of (1.1) leads in the action indeed to terms of the type α′R2, α′3R4 etc.

The problem of the supersymmetrization of (1.1) in superspace has been attacked in the

literature essentially through two types of methods, called in the following “perturbative

approach” [2]–[4], and “non-perturbative approach” [5]–[8]. According to the first method

one tries to solve the superspace Bianchi identity (1.1) order by order in α′, regardless of

the algebraic consistency of the entire procedure, while in the second method one derives

an algebraically consistent set of closed non linear relations for all auxiliary superfields, that

solve the Bianchi identity exactly to all orders in α′; it is then a mere technical exercise

to solve these relations order by order in α′. The non-perturbative approach is based on a

crucial theorem, the Bonora-Pasti-Tonin (BPT)–theorem [7], that guarantees the algebraic

consistency of the entire construction to all orders in α′. The main discrepancies between

the two methods, as developed so far, are the following two: I) the rather simple first order

solution furnished by the perturbative approach appears in disagreement with the one

furnished by the non-perturbative approach [6]; II) in the perturbative method a solution

of (1.1) in the (0,4)–sector, i.e. the sector with 0 bosonic and 4 fermionic vielbeins, is claimed

to extend automatically to a complete solution of (1.1) also in the other sectors [3], while

the non-perturbative method reveals that this statement is true only at first order in α′:

at order α′2, for example, there are simple solutions in the (0,4)–sector that do not extend

to solutions of the whole Bianchi-identity.

One of the goals achieved by the new superspace solution of (1.1) presented in the

present paper — in the framework of the non-perturbative approach — is the elimination

of the discrepancy I) between the two approaches. This is achieved trough a series of non

trivial superfield redefinitions — involving also a redefinition of the two-superform potential

B — that lead to a new, but physically equivalent, realization of the BPT-theorem, and

bring eventually the two different first-order solutions to coincide. A part from closing

a debate, that some time ago ran for several years, this result establishes a well-defined

and unique first order supersymmetric heterotic effective action, on which higher order

α′ corrections can be firmly based. Moreover, the first-order superspace parametrizations

emerging from our exact solution appear simpler then all first-order solutions proposed so

far, and they are thus particularly suitable as starting point for the derivation of higher

order corrections.

A further asset of our new solution of (1.1) is represented by the fact that the equations
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of motion of the physical fields do not propagate poltergeist degrees of freedom, and that

the equations for the auxiliary fields admit a unique perturbative solution, as expansions

in α′.

The results of this paper confirm, on the other hand, the discrepancy II) mentioned

above: our new solution confirms the point of the non-perturbative approach, as we will

show explicitly in the case of the α′2-corrections to the H-constraints.

Recently there has been a proposal for the inclusion of α′2-corrections [20], that relaxes

the “classical” torsion constraint,

Tαβ
a = 2Γa

αβ, (1.2)

allowing for the presence of a 1050 irreducible representation of SO(1, 9) in Tαβ
a [21]. In this

case the whole framework would change. Our viewpoint in the present paper is conservative

in that we maintain the classical constraint, that is also kept in the perturbative approach.

We will comment briefly on the α′2-corrections proposed in [20] in the concluding section.

For the sake of clarity we stress that the superspace framework presented in this paper

— based on (1.2) — can clearly not accommodate the entire string effective action. For

example, when one takes string loop-corrections into account, like the terms that cancel

the Green-Schwarz anomaly, then the r.h.s. of (1.2) must acquire necessarily a 1050 irrep.

of order α′3 [22]. In this case the Bianchi-identity (2.25) is indeed no longer valid, being

replaced by dH7 = α′3X8 where X8 is the standard anomaly polynomial.

Our solution is based on a set of kinematical superspace constraints that is character-

ized by the fact that, at zero order in α′ the Yang-Mills curvature F and the supergravity

curvature Ra
b are parametrized formally in an identical manner, obeying both the con-

straints,

Fαβ = 0 = Rαβa
b. (1.3)

This choice is particularly useful in that it allows on one hand a close comparison with the

component level results [1], that are based heavily on this tight analogy between the two

sectors, and on the other hand this choice is a suitable zero-order starting point for the

derivation of the superspace effective action in the framework of the pure-spinor approach,

proposed recently in [12]–[14].

The paper is organized as follows. In the next section we present our choice of kinemat-

ical torsion constraints and illustrate its compatibility with the existence of a three-form

H and its dual seven-form H7. In section three we recall the BPT-theorem and present its

new realization. Section four is devoted to a comparison of the — apparently contradictory

— first order results of [3] and [6], on the basis of our new solution. Actually, the set of

kinematical constraints used in the present paper differs from the ones of [6] by a simple

shift of the vectorial connection. Section five is devoted to concluding remarks.

2. A set of kinematical constraints

The starting point in a superspace approach to supergravity is the choice of a set of kine-

matical constraints on the supertorsion two-form,

TA = DEA = dEA + EBΩB
A,
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where the one-forms EA = dZMEM
A(Z) = (Ea, Eα) indicate respectively the bosonic and

fermionic super-zehnbeins, with a = (0, · · · , 9) and α = (1, · · · , 16). The basic identity to

solve is the torsion identity,

DTA = EBRB
A, (2.1)

where RA
B = dΩA

B + ΩA
CΩC

B indicates the supercurvature two-form, whereas the cur-

vature identity DRA
B = 0 follows from (2.1), see [23]. Recall that we have Ra

α = 0 = Rα
a

and,

Rα
β =

1

4
(Γab)α

βRab.

Imposing solely the rigid torsion constraint (1.2) and using the techniques developed in [24,

25], it can be shown that a set of kinematical constraints solving (2.1) is given by,

Tαβ
a = 2Γa

αβ , (2.2)

Tαa
b = 0, (2.3)

Tαβ
γ = 2δγ

(αλβ) − Γa
αβ(Γa)

γδλδ, (2.4)

Taα
β =

1

4

(
(Γbc)α

βTabc + (Γa)αδS
δβ

)
, (2.5)

Rαβab = (Γ[a)αγSγδ(Γb])δβ , (2.6)

Raαbc = 2(Γa)αβTbc
β −

3

2
(Γ[a)αβSbc]

β, (2.7)

where we have the spinorial derivatives,

Dαλβ = −Γa
αβDaφ + λαλβ +

1

12
(Γabc)αβ

(
T abc − 6Sabc

)
, (2.8)

DαTabc = (Γ[a)αβ

(
−6Tbc]

β + 3Sbc]
β
)

, (2.9)

DαSβγ = −2Tαδ
[βSγ]δ + (Γab)α

[βSab
γ]. (2.10)

In the Yang-Mills sector we have the Bianchi-identity,

DF = 0, (2.11)

with the standard solution,

Fαβ = 0, (2.12)

Faα = 2(Γa)αβχβ, (2.13)

Dαχβ = Tαε
βχε +

1

4
(Γcd)α

βFcd, (2.14)

where χα is the gluino superfield. As usual φ indicates the dilaton and λα = Dαφ the

gravitello superfield.

As any conventional set of constraints in N = 1, D = 10 supergravity, the parametriza-

tions (2.2)–(2.10) are characterized by two antisymmetric third rank auxiliary tensors, T abc

and Sabc, where we defined also the antisymmetric bi-spinor,

Sαβ = (Γabc)
αβSabc ↔ Sabc =

1

96
(Γabc)αβSαβ .

– 4 –



J
H
E
P
0
6
(
2
0
0
8
)
0
2
1

As we will see, in the present framework these two fields play the following roles: the

vectorial torsion T abc identifies the purely bosonic components of the three-form field-

strength, see (2.19), while Sαβ plays the role of an external ”current”, i.e. of a composed

field that describes the (self)interactions of the supergravity multiplet.

In the formulae above a part from the fields already mentioned there appear two more

fields, one is Tab
α that is the field-strength of the gravitino, and the other is Sab

α that is,

however, completely fixed by the spinorial derivative of Sαβ, see (2.10). This implies that

the formulae (2.2)–(2.10) give a complete dynamical description of the supergravity theory,

once the auxiliary superfield Sαβ is specified in terms of the physical fields. In particular,

the choice,

Sαβ = 0 = Sab
α,

amounts to pure N = 1, D = 10 supergravity. Notice also that our choice of kinematical

constraints has the particular virtue, that in pure supergravity the gravitational curvature

two-form Ra
b is parameterized formally in exactly the same way as the Yang-Mills curvature

F — see (2.6), (2.7) and (2.12), (2.13) — via the identification χα ↔ Tab
α.

As we will now recall, there is no need to impose additional constraints on the three-

form superfield — or its dual H7 — as the form of these fields as well as the equations

of motion for all physical fields, follow already from (2.2)–(2.10). To clarify this point we

introduce first a class of four-superforms that will play a crucial role in what follows.

2.1 Bianchi identities for the 3-form and 7-form fields

A particular class of four-superforms. In general an arbitrary p-superform Wp can

be decomposed in sectors (m,n), according to the number of bosonic (Ea) and fermionic

(Eα) super-zehnbeins. We will write this decomposition as,

Wp =
1

p!
EA1 · · ·EApWAp···A1 =

∑

m+n=p

Wm,n.

For a three-form we write, for example, W = W0,3 + W1,2 + W2,1 + W3,0, where,

W1,2 =
1

2
EaEαEβWβαa, etc.

We introduce then the space V4 of closed four-forms W , defined by,

V4 ≡

{
W : dW = 0, W0,4 = 0 = W1,3, W2 =

1

2
EbEaEαEβ(Γ[a)αγLγδ(Γb])δβ

}
, (2.15)

where Lαβ is an antisymmetric bi-spinor. It can be shown that the components W3,1 and

W4,0 are uniquely determined by W2,2, i.e. by Lαβ , thanks to the constraint dW = 0,

see [7, 26]. A form W belonging to V4 is thus completely specified given the tensor Lαβ.

Following [25] one can now “reconstruct” the three– and seven-form curvatures of

ten-dimensional supergravity. We define a three-form H̃ with components,

H̃αβγ = 0, (2.16)

H̃αβa = 2(Γa)αβ, (2.17)

H̃αab = 0, (2.18)

H̃abc = Tabc, (2.19)
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and a seven-form H7 with components,

H0,7 = · · · = H4,3 = 0, (2.20)

Hαβa1···a5 = −2e−2φ(Γa1···a5)αβ, (2.21)

Hαa1···a6 = −2e−2φ(Γa1···a6)α
βλβ, (2.22)

Ha1···a7 =
1

3!
e−2φεa1···a7

bcd
(
Tbcd − (Γbcd)

αβλαλβ + 12Sbcd

)
. (2.23)

Using (2.2)–(2.10) one can then show that these forms satisfy the superspace Bianchi-

identities/equations of motion,1

dH̃ = W, (2.24)

dH7 = 0, (2.25)

where W is a form belonging to V4, with Lαβ given simply by,

Lαβ = Sαβ. (2.26)

Since W is closed, (2.24) allows locally to introduce a two-form potential B, in which case

(2.25) is its equation of motion. Viceversa, if one solves (2.25) to introduce a six-form

potential B6, then (2.24) becomes its equation of motion. The “tilde” on the three-form

curvature H̃ will become clear in the next section.

From this construction one concludes the following. To get a consistent solution of ten-

dimensional supergravity one must find a super four-form W belonging to V4, expressed in

terms of the physical fields; this form determines uniquely a bi-spinor Lαβ that identifies

directly the auxiliary field Sαβ . Relevant choices for W are: 1) W = 0, that gives Sαβ = 0

and leads to pure supergravity; 2) W = α trFF, that belongs to V4 tanks to (2.11), (2.12)

and (2.13), in which case one has,

Sαβ = −8α tr(χαχβ). (2.27)

Indeed, from (2.12), (2.13), one obtains W0,4 = W1,3 = 0 and,

W2,2 = α tr(FF )2,2 = −4α EbEaEαEβ(Γ[a)αγtr(χγχδ)(Γb])δβ . (2.28)

Comparing with (2.15) one gets then (2.27). This choice for W leads to supergravity

coupled minimally to the the super Yang-Mills fields, i.e. the Chaplin-Manton theory. 3)

The third solution regards the anomaly canceling theory based on the Bianchi identity

(1.1). In this case we must choose, see the next section,

W = α(trFF − K),

for a suitable K ∈ V4, leading to,

Sαβ = −8α
[
tr(χαχβ) − tr(TαT β)

]
+ o(α2), tr(TαT β) ≡ Tab

αT baβ . (2.29)

Notice that Sαβ starts at order α. The construction of the four-form K belonging to V4 is

most conveniently performed in the framework of the BPT-theorem.

1To prove (2.24) and (2.25) one must use the parametrizations (2.2)–(2.10), but also a set of relations

that follow from (2.2)–(2.10) through the closure of the susy-algebra of the covariant derivatives Da and

Dα.
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3. The BPT-theorem

The superymmetrization of the Bianchi-identity (1.1) does not fit directly in the scheme of

the previous section, since the four-superform trRR does not belong to V4. This is due to

the fact, although d(trRR) = 0, for Sαβ 6= 0 the gravitational curvature does not satisfy

constraints like (2.12) and (2.13), and hence (trRR)0,4 and (trRR)1,3 are non vanishing.

The BPT-theorem [7] overcomes this problem as follows.

Theorem: Given a set of kinematical constraints, like (2.2)–(2.10), there exists an in-

variant three-superform X and an invariant four-superform K such that,

trRR = dX + K, with K ∈ V4. (3.1)

This theorem guarantees that there exists a consistent solution for ten-dimensional

supergravity, if one sets, see (2.24),

dH̃ = α (trFF − K) ≡ W. (3.2)

Thanks to the theorem the r.h.s. of this formula belongs, indeed, to V4. Moreover, given

(3.1) one can rephrase the relation (3.2) as the desired Bianchi-identity (1.1), now in

superspace,

dH = α (trFF − trRR), H = H̃ − αX. (3.3)

Thanks to (2.16)–(2.19) this means that for H one has the constraints,

Hαβγ = −αXαβγ , (3.4)

Haαβ = 2(Γa)αβ − αXaαβ (3.5)

Habα = −αXabα, (3.6)

while the vectorial torsion is now related to H through,

Tabc = Habc + αXabc. (3.7)

Phrasing (3.2) in this way we can then say, alternatively, that the BPT-theorem provides

a consistent set of modified constraints for the H-field, in presence of the Lorentz-Chern-

Simons form. (3.3) allows indeed to introduce the super two-form potential B in a standard

way as,

H = dB + α(ωY M − ωL), (3.8)

where ωY M and ωL are respectively the Yang-Mills and Lorentz-Chern-Simons three-forms.

Field redefinitions. Some comments are in order. First, the proof of the BPT-theorem

given in [7] uses a set of kinematical constraints that differs heavily from (2.2)–(2.10). How-

ever, since all sets of kinematical constraints based on (1.2) are related by field redefinitions,

the proof presented there carries over to the present case.

Next, the expressions of K and X depend clearly on the chosen set of kinematical

constraints, but a part from this it is important to realize that even for a fixed chosen set
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of kinematical constraints the forms X and K are not uniquely determined. There are

indeed two classes of ambiguities, both arising from field redefinitions preserving (2.2)–

(2.10), that lead therefore to physically equivalent theories.

I) The first ambiguity amounts to the shift,

X → X − dC, (3.9)

where C is an arbitrary two-superform. If X satisfies (3.1) then clearly also X−dC satisfies

this decomposition, with the same K. The form C can be absorbed simply by a shift of

the two-form potential B, B → B + α C, see (3.3) and (3.8).

II) The second ambiguity amounts to a shift of the (1, 2) component of X of the form,

Xaαβ → Xaαβ − Λ(Γa)αβ , (3.10)

where Λ is an arbitrary scalar superfield. This would lead, instead of (3.5), to,

Haαβ = 2(1 + αΛ/2)(Γa)αβ − αXaαβ ,

and the factor (1 + αΛ/2) can be eliminated by a rescaling/shift of the super-zehnbeins,

accompanied by a shift of the spinorial connection Ωαa
b, see [26].

3.1 A realization of the BPT-theorem

To obtain an explicit superspace formulation for supergravity one must determine the forms

X and K, on the basis of (3.1).

As shown in [7] it is sufficient to realize the decomposition trRR = dX + K in the

sectors (0, 4) and (1, 3), as it will then hold automatically also in the sectors (2, 2), (3, 1)

and (4, 0). Notice in particular that once one has found a three-form X such that K

vanishes in the sectors (0,4) and (1,3), the form K is automatically closed because trRR

is a closed form. In summary, to find an explicit realization of (3.1) it is sufficient to solve

the equations,

(trRR)0,4 = (dX)0,4, (3.11)

(trRR)1,3 = (dX)1,3. (3.12)

The algebraic details needed for the solutions of these equation are given in the appendix,

here we repeat only the main steps.

We start with equation (3.11). It involves on its r.h.s. only the components X0,3 and

X1,2, and on its l.h.s only the curvature components (2.6). This equation admits non trivial

solutions for a vanishing X0,3, i.e. for,2

Xαβγ = 0. (3.13)

2Here we are interested only in ”minimal” solutions, i.e. solutions that correspond just to the super-

symmetric completion of the Bianchi-identity (1.1); these solutions do not include, for example, the terms

quartic in the curvature with an irrational coefficient, of the form ζ(3)R4, that are present in the low en-

ergy effective action of all ten dimensional supergravity theories [27]. As long as one insists on (1.2), to

supersymmetrize such terms one must indeed choose a non vanishing X0,3, see [28].
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With this choice the general solution of (3.11) for X1,2 is given by,

Xaαβ = −72Γb
αβS2

ab + Λ(Γa)αβ + (Γb)αβCab + (Γabcde)αβY bcde, (3.14)

where we set S2
ab ≡ SacdSb

cd, while the scalar field Λ as well as the antisymmetric tensors

Cab and Yabcd are completely arbitrary. The fields Cab and Λ can be eliminated respectively

through the shifts (3.9) and (3.10), so that we can take as general solution of (3.11),

Xaαβ = −72Γb
αβS2

ab + (Γabcde)αβY bcde, (3.15)

where the tensor Y bcde is still arbitrary. The simplest solution would amount to set,

Y bcde = 0,

but the key point is that for such a choice the equation (3.12) would not admit any solution

for X2,1 at all! Stated differently, it is not sufficient to solve the H-Bianchi identity (3.3)

at the level (0, 4) — at least when one takes corrections beyond the first order in α into

account. This point remains still controversial w.r.t. to the perturbative approach [3]. The

equation (3.12) involves actually X1,2 as well as X2,1, and it can be seen that it admits a

solution for X2,1 if one chooses, see the appendix,

Yabcd = 2D[aSbcd] + 4S[abcDd]φ + 6(ST )[abcd], (3.16)

where (ST )abcd ≡ SeabTcd
e. Once a solution for X2,1 of eq. (3.12) exists, it can also be

shown to be unique, and once (3.11) and (3.12) are solved, also X3,0 and the form K ∈ V4

are consistently and uniquely determined, see [7].

In summary we can say that the decomposition trRR = dX + K fixes uniquely the

superforms X and K, once one has chosen (3.13) and (3.15) with (3.16). At this point it

is a straightforward, but very lengthy, exercise to determine X2,1, X3,0 and K explicitly.

In particular we know that K2,2 has the form,

K2,2 =
1

2
EbEaEαEβ(Γ[a)αγKγδ(Γb])δβ , (3.17)

and the relation W = α (trFF − K) at level (2,2) gives then,

Sαβ = −8α tr(χαχβ) − αKαβ, (3.18)

that determines the auxiliary field Sαβ. Similarly the equation (3.7) determines the aux-

iliary field Tabc. Actually, the bi-spinor Kαβ as well as the field Xabc are complicated

functions of the physical fields, as well as of the auxiliary fields Sαβ and T abc themselves.

This means that the equations for those fields become implicit relations that are better

written as,

Sαβ = −8α tr(χαχβ) − α Kαβ(S, T ), (3.19)

Tabc = Habc + α Xabc(S, T ), (3.20)

and hence they can only be solved iteratively order by order in α.

We insist, however, on the fact that our construction leads to a theory that is super-

symmetric to all orders in α, due to the algebraic consistency of our parametrizations in

all sectors of the Bianchi-identities.
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3.2 The theory at first order in α

At first order in α our construction becomes particularly simple. Since the field Sαβ is

of order α, from (3.15) and (3.16) we see that also X1,2 is of order α. Since (trRR)1,3 in

(3.12) is also of order α — see (2.6) and (2.7) — this equation implies then that also X2,1

is of order α. To analyze the orders of X3,0 and K we write the decomposition (3.1) at

level (2,2), see (3.17),

(trRR)2,2 = (dX)2,2 +
1

2
EbEaEαEβ(Γ[a)αγKγδ(Γb])δβ . (3.21)

At level (2,2) trRR has now also a term at zero order in α, in that (2.6) and (2.7) give,

tr(RR)2,2 = −4EbEaEαEβ(Γ[a)αγtr(T γT δ)(Γb])δβ + o(α).

On the other hand, since all components of X, a part from possibly X3,0, are of order α

we have,

(dX)2,2 =
1

2
EaEbEαEβΓc

αβXcba + o(α).

Substituting these expressions in (3.21) we conclude that also X3,0 is of order α, and that

we have,

Kαβ = −8 tr(TαT β) + o(α).

Substituting this expression in (3.18) gives (2.29).

Since the form X is entirely of order α, the corrections to the H-constraints (3.4)–(3.6)

all vanish at this order and the superspace parametrizations become extremely simple. We

collect here the most important ones,

Hαβγ = 0, (3.22)

Haαβ = 2(Γa)αβ + o(α2) (3.23)

Habα = o(α2), (3.24)

Tabc = Habc + o(α2), (3.25)

Sαβ = −8α(tr(χαχβ) − tr(TαT β)) + o(α2), (3.26)

Sab
α = −4α(tr(Fabχ

α) − tr(RabT
α)) + o(α2), (3.27)

where tr(RabT
α) ≡ Rab

cdTdc
α. (3.27) follows from (3.26) through the defining relation

(2.10), using (2.14) and its gravitational analog,

DαTab
β = Tαε

βTab
ε +

1

4
(Γcd)α

βRcdab + o(α),

that is a direct consequence of the torsion Bianchi-identity (2.1). Notice the symmetry

between the supergravity and the Yang-Mills first order corrections in (3.26) and (3.27).

4. Relation with previous superspace formulations

The first realization of the BPT-theorem has been given in [7], in the framework of a partic-

ular set of kinematical constraints. The set used in that reference was very convenient for

– 10 –



J
H
E
P
0
6
(
2
0
0
8
)
0
2
1

the proof of the theorem, but it was not particularly suitable for a perturbative expansion

in α, due to its cumbersome “mixing” between physical and auxiliary fields.

A more convenient set of constraints was proposed in reference [6] — relying again

on the non-perturbative approach and on the BPT-theorem — with the particular aim

of comparing the perturbative approach of [3] with the non-perturbative one, revealing a

disagreement already at first order in α, as mentioned in the introduction. The constraints

used in [6] differ from (2.2)–(2.10) by a shift of the vectorial connection, Ωab
c → Ωab

c−Tab
c,

and by some trivial rescalings. After these simple transformations the three-form X found

by the authors of [6] — in the following called X∗ — becomes again (necessarily) of the

form (3.13), (3.15),

X∗

αβγ = 0, (4.1)

X∗

aαβ = −72Γb
αβS2

ab + (Γabcde)αβY ∗bcde. (4.2)

However, the choice made for Y ∗

abcd in [6] differs from (3.16) in that,3

Y ∗

abcd =
1

3

(
D[aTbcd] + 2T 2

[abcd] − T[ab
α(Γcd])α

βλβ

)
+ 4S[abcDd]φ

+(ST )[abcd] + 6S2
[abcd] +

1

72
εabcdc1···c6 Sc1c2c3T c4c5c6, (4.3)

where S2
abcd = SabeS

e
cd. It can indeed be shown that with the choice (4.3) the equation

(3.12) allows a consistent solution for X∗

2,1, and hence the forms X∗ and K∗ are uniquely

and consistently determined, as in the previous section, by the relation,

trRR = dX∗ + K∗, K∗ ∈ V4. (4.4)

With respect to (3.16) the expression (4.3) appears more complicated, but the most

important difference is that Y ∗

abcd and X∗

aαβ are of order zero in α, while (3.15) is of first

order in α. This means that with the choice (4.3) the constraint for Haαβ in (3.5) has now

necessarily a non-vanishing first order correction in α, as opposed to (3.23). This feature

was on the basis of the disagreement between [6] and the perturbative approach [3], in that

the letter claimed for a vanishing first order correction to this constraint, which — in turn

— is now in agreement with (3.23). We will now show that the solution of [6] is related to

the one presented in this paper by a (rather complicated) field-redefinition, and that the

two solutions are thus physically equivalent. This reconciles in particular the first order

results of the perturbative approach [2]–[4], with the ones of the non-perturbative one.

4.1 Equivalence between two non-perturbative solutions

The proof of the physical equivalence of the decompositions (3.1) and (4.4) relies on the

field redefinitions (3.9) and (3.10) introduced in section 3. Since for a vanishing X0,3 the

forms X and K are uniquely fixed by the component X1,2, it is sufficient to find a two-form

3This expression is obtained from formula (24) of ref. [6] by setting Ω∗

ab
c = Ωab

c
− Tab

c, and using the

identity R[abcd] = D[aTbcd] + T 2
[abcd], that follows from (2.1). A part from this one has to take into account

also the different overall normalizations of Sαβ and H used in [6], w.r.t. the present paper.
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C and scalar field Λ such that the expressions (3.15) and (4.2) transform into each other,

keeping X0,3 vanishing.

To this order we define a super two-form C with components,

Cαβ = 0, (4.5)

Caα = −
2

3
(ΓaΓ

bc)αβTbc
β, (4.6)

Cab = −
4

3
R[ab] −

1

3
Tcd

α(Γab
cd)α

βλβ − 10DcSabc − 22Scd[aTb]
cd, (4.7)

where R[ab] is the antisymmetric part of the Ricci tensor Rab = Rc
acb. Notice that this

two-form is of zero order in α, as is X∗

1,2. Using (2.2)–(2.10) it is then a lengthy but

straightforward calculation to show that one has,

(dC)αβγ = 0, (4.8)

(dC)aαβ = (Γa
bcde)αβ

[
1

3

(
DbTcde + 2T 2

bcde − Tbc
α(Γde)α

βλβ

)
− 5 (ST )bcde

+6S2
bcde − 2Db Scde +

1

72
εbcdec1···c6 Sc1c2c3T c4c5c6

]
+ (Γa)αβΛ, (4.9)

where we defined the superscalar,

Λ =
2

3
R − 36SabcS

abc + 2SabcT
abc, R ≡ Ra

a. (4.10)

Subtracting (4.9) from (4.2) one obtains then,

(X∗ − dC)αβγ = 0, (4.11)

(X∗ − dC)aαβ − (Γa)αβΛ = Xaαβ , (4.12)

with Xaαβ given in (3.15). From this we conclude that the solution proposed in [6] is

physically equivalent to ours.

5. Concluding remarks

In this paper we have proposed a new all order solution of the superspace Bianchi-identities

for (minimal) anomaly free N = 1, D = 10 supergravity. The new solution realizes the

physical equivalence — at first order — between the perturbative approach of [2]–[4], and

the non-perturbative approach of [5]–[8]. Eventually the set (2.2)–(2.10), with (3.22)–

(3.27), represents a further simplification of the first order constraints of [3], achieved by a

suitable torsion shift.

Although we performed only an explicit first order calculation, given (3.15) with the

(closed) expression (3.16) the derivation of the higher order theory is now a merely technical

point. Notice in particular that the BPT-theorem entails also closed expressions for X2,1,

X3,0 and K, in terms of the auxiliary fields Sαβ and T abc and their spinorial derivatives.

Since at zero order in α the Yang-Mills and supergravity supercurvatures have identical

parametrizations, see (1.3), the “difference-structure” of the term trFF − trRR in the H-

Bianchi identity, entails the difference-structure of the first order corrections in (3.26) and
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(3.27). Since exactly this feature was the starting point of the component level Noether-

procedure of [1], our new superspace formulation is suitable for a direct comparison with

the higher order results proposed in that reference.

Poltergeists and Gauss-Bonnet action. The choice (4.2) of ref. [6] is characterized

by a further problematic feature, i.e. the presence of a term linear in the derivative of the

curvature of the physical field Tabc = Habc + o(α),

(X∗

aαβ)lin =
1

3
(Γabcde)αβDbT cde. (5.1)

It can be seen that this terms would lead in X∗

3,0 to a zero order contribution that is linear

in �Tabc, and hence (3.7) would have the structure,

(1 + cα�)Tabc = Habc + · · · ,

where c is a numerical constant, and the dots indicate non linear terms. Due to supersym-

metry this would then lead to an Einstein equation of the form,

(1 + cα�)Rab = jab,

where jab is a non linear current. The presence of the fourth-order derivatives on the

zehnbein would then imply the propagation of unphysical poltergeist degrees of freedom

in the metric, and similar poltergeists would appear also in the fermionic fields. The

same problematic feature occurred also in the original version of the non-perturbative

approach [7]. In the present version of the theory these unphysical modes are absent,

because in (3.15) there are no terms that are linear in the physical fields. The disappearance

of these linear terms is easily understood from the point of view of the field redefinitions

(4.6), (4.7). Indeed, (4.6) is linear in the field strength of the gravitino, and (4.7) — that

shifts Bab — contains a term that is linear in the field strength of Bab in that,

R[ab] = −
1

2
DcTabc = −

1

2
DcHabc + o(α).

Similarly the scaling parameter (4.10) contains a term that is linear in the second derivative

of the metric. These linear transformations eliminate thus, in particular, the linear term

(5.1).4 On the other hand in (3.15) there appears a term that is linear in the derivative of

the auxiliary field Sabc. However, since this field is at first order in α already quadratic in

the physical fields, see (2.29), its iterative determination will never give rise to terms that

are linear in the physical fields. In the formulation of the theory presented in this paper

all equations of motion are therefore free from poltergeists.

This holds in particular also for Einstein’s equation, that at first order in α gets then

corrections that are quadratic in the Riemann tensor,5 without fourth-order derivative

4Strictly speaking these transformations — being linear in the derivatives of the fields — are non-

invertible, and hence they are only algebraically allowed.
5Since in the action there is a term quadratic in Fab — the Yang-Mills action — there are necessarily

also terms quadratic in Rabcd. This is due to the difference-structure of (3.26) and (3.27).
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terms like �Rab. This implies that the corresponding term in the action is necessarily

the Gauss-Bonnet action, that in the language of differential forms can be written as the

integral of a ten-form,

SGB = α

∫
εa1···a10 Ea1 · · ·Ea6 Ra7a8 Ra9a10 .

This form is indeed naturally predicted by the low energy effective actions provided by

string theory calculations [27]. Given the simplicity of our superspace construction we

hope to be able to derive the complete supersymmetrization of SGB in ten dimensions to

order α, that is still unknown.

As we have observed several times, the construction given in this paper furnishes an

all order solution of the superspace Bianchi-identity (1.1), that is based on the classical

torsion constraint (1.2). On the other hand, the order–α2 solution proposed recently in [20]

relaxes this constraint and allows for a torsion of the form, in our notations,

Tαβ
a = 2Γa

αβ + k α (Γbcdef )αβT abcSdef , (5.2)

where k is a fixed numerical coefficient. A direct comparison between our construction and

the one of [20] is rather difficult, due to the complicated formulas that follow from (5.2). A

priori it could happen that the two approaches are related by field redefinitions, but for this

it would be necessary that the second term in (5.2) can be eliminated by a field redefinition,

and by inspection this is rater unlikely. The two solutions seem thus unrelated. A drawback

of the solution in [20] is that, once one renounces to (1.2), it is almost impossible to keep

the algebraic consistency of the entire construction under control. Here we do not want

to move any concrete criticism against a solution based on (5.2) in that — apart from

consistency requirements — eventually only an explicit superspace string calculation can

decide which formulation is physically correct. Our point is simply that, from an algebraic

point of view, there is no need to modify the classical torsion constraint, since there exists

a well defined solution based on (1.2): the “minimal solution” presented in this paper.

To conclude we observe that, as shown in [28], there are “non-minimal” corrections to

the string effective action of higher order in α′ — like the term ζ(3)R4 — that can likewise

be accommodated in the present framework in terms of an appropriate four-form W (see

(2.15) and (2.26)), preserving thus once more the classical rigid torsion constraint (1.2).
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A. The decomposition trRR = dX + K

As mentioned in the text, to prove the decomposition in the title it is sufficient to solve

(3.11) and (3.12).
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Solution of (3.11). Since X0,3 = 0, equation (3.11) amounts to,

R(αβcd Rγδ)
dc = −144S2

ab Γa
(αβ Γb

γδ) = 2Γa
(αβXaγδ), (A.1)

where on the l.h.s. we inserted (2.6), and the symmetrization is intended over the indices

(αβγδ). The general solution of this equation has the structure,

Xaαβ = −72Γb
αβS2

ab + (Γa)γ(αXγ
β), (A.2)

where Xγ
β is an arbitrary by-spinor. This is due to the cyclic identity,

(Γa)(αβ(Γa)γ)δ = 0. (A.3)

Since one has the general representation,

Xγ
β = δγ

βΛ +
1

2
(Γab)

γ
βCab + (Γabcd)

γ
βY abcd,

(A.2) reduces to (3.14).

Solution of (3.12). Equation (3.12) can be written as,

Ra(αcd Rβγ)
dc +

1

2
D(αXaβγ) +

1

2
T(αβ

δXaγ)δ = Γb
(αβXbaγ), (A.4)

where the unknown is the field Xbaγ , antisymmetric in a and b, and the symmetrization is

over (αβγ). On general grounds the l.h.s. of this equation has the structure,

Γb
(αβWbaγ) + (Γa

c1c2c3c4)(αβWγ)c1c2c3c4, (A.5)

i.e. contains terms that factorize a Γ1-matrix and terms that factorize a Γ5-matrix. The

equation (A.4) can have a solution for Xbaγ only if the terms that factorize a Γ5 drop

eventually out, in which case one has the (unique) solution Xbaγ = Wbaγ . We insert thus

(3.14) in (A.4) and keep only the terms that factorize a Γ5. An explicit calculation gives,

[
Ra(αcd Rβγ)

dc +
1

2
D(αXaβγ) +

1

2
T(αβ

δXaγ)δ

]

Γ5

= (Γa
c1c2c3c4)(αβWγ)c1c2c3c4, (A.6)

where,

Wγc1c2c3c4 ≡ Γb
γδ

(
4 T̃b[c1

δ Sc2c3c4] + 6 T̃[c1c2
δ Sc3c4]b

)
+

(
1

2
Dγ + λγ

)
Yc1c2c3c4, (A.7)

and we defined,

T̃ab
α = Tab

α −
1

4
Sab

α.

The question is now whether there exists an antisymmetric tensor Yabcd such that the

expression in (A.6) factorizes eventually a Γ1-matrix. For this to happen it is necessary

and sufficient that (A.7) assumes the form,

Wγc1c2c3c4 = (Γ[c1)γδZ
δ
c2c3c4]

, (A.8)
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for some antisymmetric tensor Zδ
c2c3c4

.6 Indeed, thanks to the cyclic identity (A.3) in this

case one has,

(Γa
c1c2c3c4)(αβWγ)c1c2c3c4 = −

1

2
Γb

(αβ(Γc1c2c3
aΓb)γ)δZ

δ
c1c2c3

,

that is of the form of the first term in (A.5).

An explicit evaluation of
(

1
2 Dγ + λγ

)
Yc1c2c3c4 shows that the reduction (A.8) happens

indeed if one chooses for Yc1c2c3c4 (3.16) or (4.3). The conclusion is that for both these

choices the equation (A.4) admits a consistent and unique solution.
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[19] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string

compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1

[hep-th/0610327].

[20] S. Bellucci and D. O’Reilly, Non-minimal string corrections and supergravity, Phys. Rev. D

73 (2006) 065009 [hep-th/0603033];

D. O’Reilly, String corrected supergravity: a complete and consistent non-minimal solution,

hep-th/0611068.

[21] B.E.W. Nilsson, Off-shell D = 10, N = 1 Poincaré supergravity and the embeddibility of
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